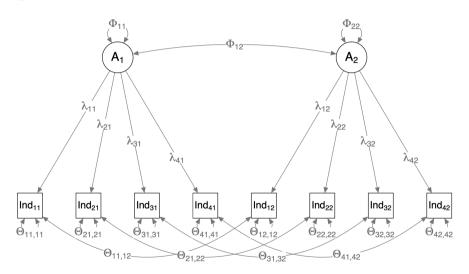
Commensurable indicators - finding potentially metrically invariant indicators

Eric Klopp¹ Stefan Klößner^{2,3}

¹Saarland University ²Saarland University ³QuantPi

XI Conference European Association of Methodology Teneriffe, 23 July, 2025

Example longitudinal CFA



Example longitudinal CFA

Time 1	Time 2			
0.80	5.00			
4.00	5.00			
3.20	4.00			
2.00	2.00			
1.00	1.00			
0.24				
3	2			
1	7			
4	1			
2	8			
0.	20			
0.50				
0.25				
0.	50			
	0.80 4.00 3.20 2.00 1.00 0.3 1 4 2			

- ▶ Sample with N = 500 cases
- Does the configural model hold?
- Result: $\chi^2(15) = 7.045$, p = 0.956, CFI= 1.000, RMSEA= 0.000
- Does full metric MI hold?
- Result: $\chi^2(18) = 637.553, p < .001,$ CFI= 0.800. RMSEA= 0.262
- ► Full metric MI does not hold, but are there invariant indicators so that a partial metric MI holds?

DGP - Notation

Data generating process (DGP) and estimated model:

▶ We distinguish between a DGP, a specified model, and an estimated model (Klopp & Klößner, 2023, p. 197-200).

Notation:

- ▶ The number of indicators is p, and index $j \in \{1, ..., p\}$ denotes the indicators.
- ▶ The number of factors is m, and index $i \in \{1, ..., m\}$ denotes the factors.
- ▶ The number of time points is L, and index $I \in \{1, ..., L\}$ denotes the time points.
- ► The loadings (and the other parameters) follow the usual conventions.
- ▶ The parameter vector is called **p**, or simply parameter **p**.

Definition - Set of indicators

Definition (Set of indicators)

For a given parameter \mathbf{p} and for all factors i,

$$\operatorname{Ind}_{i}(\mathbf{p}) = \{j : \exists l \text{ with } \lambda_{l,ji} \neq 0\}$$

is called the set of indicators, i.e., the indicators which load on factor i for at least one instance.

Loadings	Time 1	Time 2	
$\lambda_{1\prime}$	0.80	5.00	
λ_{2I}	4.00	5.00	
λ_{3I}	3.20	4.00	
λ_{4I}	2.00	2.00	

► Set of indicators: Ind₁(**p**) = {1, 2, 3, 4}

Definition - Loading profile

Definition (Loading profile)

For a given parameter \mathbf{p} , all factors i and all indicators $j \in \operatorname{Ind}_i(\mathbf{p})$, the *loading profile* of an indicator j on factor i is the non-zero vector

$$\lambda_{ji}^*(\mathbf{p}) := (\lambda_{1,ji}, \ldots, \lambda_{L,ji})$$

Loadings	Time 1	Time 2		
$\lambda_{1\prime}$	0.80	5.00		
λ_{2l}	4.00	5.00		
λ_{3I}	3.20	4.00		
λ_{4I}	2.00	2.00		

► Loading profiles:

$$\lambda_{11}(\mathbf{p}) = (0.80, 5.00)$$

$$\lambda_{21}(\mathbf{p}) = (4.00, 5.00)$$

$$\lambda_{31}(\mathbf{p}) = (3.20, 4.00)$$

$$\lambda_{41}(\mathbf{p}) = (2.00, 2.00)$$

Definition - Metric Invariance

Definition (Metric invariance)

For a given parameter \mathbf{p} , metric invariance of indicator j with respect to factor i and parameter \mathbf{p} is given if the loading profile $\lambda_{ji}^*(\mathbf{p})$ is a multiple of the vector of ones $\mathbf{1}$.

Loadings	Time 1	Time 2		
λ_{1I}	0.80	5.00		
λ_{2I}	4.00	5.00		
λ_{3I}	3.20	4.00		
λ_{4I}	2.00	2.00		

• Metric invariance: $\lambda_{41}(\mathbf{p}) = (2.00, 2.00) = 2 \cdot \mathbf{1}$

Definition - Commensurability - Lemma

Definition (Commensurability)

For a given parameter \mathbf{p} and for all factors i and all indicators $j_1, j_2 \in \operatorname{Ind}_i(\mathbf{p})$, \sim indicates the *relation of* commensurability between indicators j_1 and j_2 with respect to factor i and parameter \mathbf{p} , with $j_1 \sim j_2$ if and only if $\lambda_{j_1i}(\mathbf{p})$ and $\lambda_{j_2i}(\mathbf{p})$ are non-zero multiples of each other.

Loadings	Time 1	Time 2	
$\lambda_{1\prime}$	0.80	5.00	
λ_{2I}	4.00	5.00	
λ_{3I}	3.20	4.00	
λ_{4I}	2.00	2.00	

• Commensurable indicators: $\lambda_{31}(\mathbf{p}) = (3.20, 4.00) = 0.8 \cdot (4, 5) = 0.8 \cdot \lambda_{21}(\mathbf{p})$

Lemma (Equivalence relation)

The relation of commensurability is an equivalence relation, i.e., it is reflexive, symmetric, and transitive.

Definition - CIS - PCIS

Definition (CIS and PCIS)

The equivalence class of commensurability relations is called *commensurable indicator subset* CIS with respect to factor i and parameter \mathbf{p} . The partition of $\operatorname{Ind}_i(\mathbf{p})$ given by the CIS is called the partition of commensurable indicator subsets $\operatorname{PCIS}_i(\mathbf{p})$.

$$\begin{aligned} & \textit{C}_1 = \{1\} \\ & \textit{C}_2 = \{2,3\} \\ & \textit{C}_3 = \{4\} \\ & \textit{PCIS}_1(\textbf{p}) = \{\{1\},\{2,3\},\{4\}\} \end{aligned}$$

Definition - Average loading profile - Static indicator loading

Definition (Average loading profile and Static indicator loading)

For a commensurable indicator subset $C \in PCIS_i(\mathbf{p})$, the average loading profile $\overline{\lambda_{C,i}^*(\mathbf{p})}$ of C is defined as

$$\overline{\lambda_{C,i}^*(\mathbf{p})} := \frac{1}{|C|} \sum_{j \in C} \lambda_{ji}^*(\mathbf{p}),$$

and the static indicator loading $\lambda_{j,C}^*(\mathbf{p})$ of C with respect to indicator $j \in C$ is defined as

$$\lambda_{j,C}^*(\mathbf{p}) := rac{\mathbf{1}^ op \lambda_{ji}^*(\mathbf{p})}{\mathbf{1}^ op \overline{\lambda_{C,i}^*(\mathbf{p})}}.$$

Example

	CIS	λ_{ji}^*	(p)	$1^{\top} \cdot \lambda_{ji}^*(\mathbf{p})$	$\overline{\lambda_{\mathcal{C},i}^*}$	(p)	$1^{ op} \cdot \overline{\lambda_{\mathcal{C},i}^*(\mathbf{p})}$	$\lambda_{j,c}^*(\mathbf{p})$
Ind. 1	C_1	0.80	5.00	5.80	0.80	5.00	5.80	1
Ind. 2 Ind. 3	C ₂ C ₂	4.00 3.20	5.00 4.00	9.00 7.20	3.60	4.50	8.10	10/9 8/9
Ind. 4	<i>C</i> ₃	2.00	2.00	4.00	2.00	2.00	4.00	1

► Average loading profile of a CIS *C*:

$$\overline{\lambda_{C,i}^*(\mathbf{p})} := \frac{1}{|C|} \sum_{j \in C} \lambda_{ji}^*(\mathbf{p})$$

▶ Static indicator loading of CIS C with respect to indicator $j \in C$:

$$\lambda_{j,\mathcal{C}}^*(\mathbf{p}) := rac{\mathbf{1}^ op \lambda_{ji}^*(\mathbf{p})}{\mathbf{1}^ op \overline{\lambda_{\mathcal{C},i}^*(\mathbf{p})}}$$

Proposition

For all factors i, parameters \mathbf{p} , a CIS $C \in PCIS_i(\mathbf{p})$:

 The loading profile can be written as the product of the indicator's static loading on C and the average loading profile of C

$$\lambda_{ji}^*(\mathbf{p}) = \lambda_{j,C}^*(\mathbf{p}) \cdot \overline{\lambda_{C,i}^*(\mathbf{p})}.$$

2. Within a CIS C, the static indicator loadings on that CIS average to unity

$$rac{1}{|C|}\sum_{j\in C}\lambda_{j,C}^*(\mathbf{p})=1.$$

3. Metric invariance with respect to indicator j is given if and only if the average loadings profile of a CIS C is a non-zero multiple of $\mathbf{1}$, the vector of ones. In this case, we say that a CIS C fulfills metric invariance.

Commensurable indicators

Proposition - Example

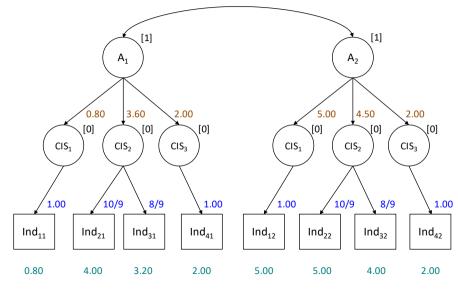
Decomposition

$$\lambda_{ji}^*(\mathbf{p}) = \overline{\lambda_{C,i}^*(\mathbf{p})} \cdot \lambda_{j,C}^*(\mathbf{p}).$$

	CIS	λ_{ji}^*	(p)	$1^{\top}\cdot\lambda_{ji}^{*}(\mathbf{p})$	$\overline{\lambda_{\mathcal{C},i}^*}$	(p)	$1^{ op}\cdot\overline{\lambda_{\mathcal{C},i}^*(\mathbf{p})}$	$\lambda_{j,c}^*(\mathbf{p})$
Ind. 1	C_1	0.80	5.00	5.80	0.80	5.00	5.80	1
Ind. 2 Ind. 3	C_2 C_2	4.00 3.20	5.00 4.00	9.00 7.20	3.60	4.50	8.10	10/9 8/9
Ind. 4	<i>C</i> ₃	2.00	2.00	4.00	2.00	2.00	4.00	1

$$\lambda_{1,i}^{*}(\mathbf{p}) = (0.80, 5.00) \cdot 1 = (0.80, 5.00)$$
$$\lambda_{2,i}^{*}(\mathbf{p}) = (3.60, 4.50) \cdot 10/9 = (4.00, 5.00)$$
$$\lambda_{3,i}^{*}(\mathbf{p}) = (3.60, 4.50) \cdot 8/9 = (3.20, 4.00)$$
$$\lambda_{5,i}^{*}(\mathbf{p}) = (2.00, 2.00) \cdot 1 = (2.00, 2.00)$$

Decomposition as higher-order factor model - DGP



Estimation and Monte Carlo study

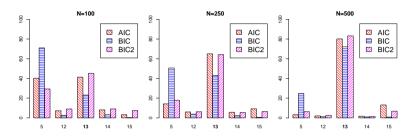
The hierarchical model can be used to search for the CIS structure

- Consider all partitions of the set of indicators
- For each partition set up an higher-order model
- Estimate the average loading profile and the static indicator loadings
- ► Scaling: Unit variances for the factors, zero variances for the CIS and effects scaling for the static loadings (cf., Proposition #2)
- Compare the models for each partition using information criteria (AIC, BIC, BIC2)

Monte Carlo study

- ▶ 15 partitions
- ▶ 10.000 replications of the example DGP
- ▶ Sample sizes: $N \in \{150, 250, 500\}$
- Estimation using lavaan

Results - CIS structure



- ► Partition 5: {{2,3,4}, {1}}
- ▶ Partition 12: {{2,4}, {1}, {3}}
- ► Partition 13: {{2,3}, {1}, {4}}
- ▶ Partition 14: {{3,4}, {1}, {2}}
- ▶ Partition 15: {{1}, {2}{3}, {4}}

- BIC2 work fairly well, even for a small sample size
- ► The effectiveness depends on the sample size and the measurement error (cf., Klopp & Klößner, 2022)

Results - Considerations

- We have a CIS structure, i.e., indicators that are commensurable and may be metrically invariant.
- Metric MI tests for each CIS.
- ▶ Testing the "invariance" of *only one* indicator is impossible (Klopp & Klößner, 2023).
- If indicators j_1 and j_2 are commensurable, there is a change of scale such that these indicators are metrically invariant (Klopp & Klößner, 2023; Klößner & Klopp, 2017, cf., Yoon & Millsap, 2007).

Loadings	Time 1	Time 2	Time 1	Time 2
$\lambda_{1\prime}$	0.80	5.00	0.20	1.00
λ_{2I}	4.00	5.00	1.00	1.00
λ_{3I}	3.20	4.00	0.80	0.80
λ_{4I}	2.00	2.00	0.50	0.40
Lat. var.	1.00	1.00	16.00	25.00
Lat. cov	0.	24	4.	80

Change of scale:

$$\mathbf{\Lambda}_2 = \mathbf{\Lambda}_1 \cdot \mathbf{D}$$
 and $\mathbf{\Phi}_2 = \mathbf{D}^{-1} \cdot \mathbf{\Phi}_1 \cdot \mathbf{D}^{-1}$

▶ In the example:
$$D = \begin{pmatrix} 1/4 & 0 \\ 0 & 1/5 \end{pmatrix}$$

Remarks

Advantages:

▶ Theoretically derived approach to find commensurable, i.e., potentially metrically invariant indicators.

Disadvantages:

- Brute force approach.
- Number of partitions grows fast (Bell numbers: 1, 2, 5, 15, 52, 203, 877, 4140, 21147, ...).
- Computationally demanding when there are a lot of indicators.

References I

- Klopp, E., & Klößner, S. (2022). The effects of scaling, manifest residual variances, and sample size on the χ^2 -test statistic of the metric invariance model. In A. Hernandez & I. Tomas (Eds.), *Proceedings from the 9th european congress of methodology* (p. 100-106). Valencia: Universitat de Valencia. doi: 10.7203/PUV-OA-438-5
- Klopp, E., & Klößner, S. (2023). Scaling metric measurement invariance models. Methodology, 19, 192-227.
- Klößner, S., & Klopp, E. (2017). *Metric measurement invariance of latent variables: Foundations, testing, and correct interpretation* (Tech. Rep.). http://www.oekonometrie.uni-saarland.de/papers/PFL.pdf: Saarland University.
- Yoon, M., & Millsap, R. (2007). Detecting violations of factorial invariance using data-based specification searches: A Monte Carlo study. *Structural Equation Modeling: A Multidisciplinary Journal*, 14(3), 435-463. doi: 10.1080/10705510701301677