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• Parameter Estimation: Extensively studied in SEM (e.g., distributions, estimators)

• Standard Errors (SEs): Critical but underexplored (Deng et al., 2018)

• Why SEs Are Important:

• Reflect Sampling Variability: Essential as SEM relies on sample data, not full populations

• Indicator of Precision:

− Smaller SEs = Higher precision of parameter estimates

− Larger SEs = Greater uncertainty

• Role in Statistical Testing:

− Key for z-scores, t-scores, and significance testing

− Ensures robust and reliable conclusions in population inferences (Yuan & Hayashi, 2006)

Significance of Standard Errors (SEs) in SEM



• Two Approaches in SEM:

• Standard Estimation (Joint ML):

• Uses maximum likelihood (ML) to estimate parameters simultaneously.

• Structural-After-Measurement (SAM) Approach:

• Local SAM (LSAM): A SAM approach dividing estimation into separate measurement and structural 
components (Rosseel & Loh, 2022).

• Purpose: Systematically evaluate SE estimation under varying conditions within the LSAM 
approach to SEM, focusing specifically on continuous (and complete) data

• Research Gap:

• While LSAM point estimates have been examined (Dhaene & Rosseel, 2023), SE behavior in LSAM remains 
unexplored.

Significance of Standard Errors (SEs) in SEM



Comparison of Standard Estimation and LSAM

Aspect Joint ML Local SAM (LSAM)

Estimation Method Joint, system-wide estimation of all 

parameters (Bollen, 1996)

Two-stage approach: estimates 

measurement first, then structural part 

(Rosseel & Loh, 2022)

Optimization Relies on iterative procedures Allows noniterative estimators for 

measurement part (Dhaene & Rosseel, 

2021)

Addressing Model Issues Prone to nonconvergence and 

improper solutions with small samples 

(e.g., negative variances)

Mitigates interpretational confounding

and convergence issues by separating 

measurement from structural estimates

Flexibility for Complex 

Models

Limited flexibility for complex models Enables implementation of some 

complex models (e.g., multi-group 

mixtures) that are not possible with joint 

estimation (Perez Alonso et al., 2024)



1. Calculate the Unit Information Matrix:

• Can be either observed or expected (Savalei, 2010)

2. Derive the Variance-Covariance Matrix:

• Invert the unit information matrix.

• Divide by sample size (N) to reflect variability in estimates

3. Take the square root of diagonal elements of the variance-covariance matrix to get SEs

• Robust SEs in ML Framework:

• To protect against deviations from normality and correct model specification

Different approaches to compute SEs: standard estimation 



Different approaches to compute SEs: standard estimation cont. 

• Two-Step SE Estimation

• Using the analytic procedure below, a joint information matrix 𝜤 is computed for all 

parameters in the full model, which is then partitioned as follows: 

𝐼 =
𝐼11 𝐼12
𝐼21 𝐼22

− where the 1–index corresponds to the measurement part, and the 2–index corresponds to the 

structural part 

• The two-step corrected variance-covariance matrix for the structural parameters (Σ2(1)) is then 

computed as follows, where Σ11 represents the variance-covariance matrix obtained from Step 1: 

Σ2(1)= 𝐼22
−1 + 𝐼22

−1 𝐼21Σ11𝐼12𝐼22
−1

• This procedure follows the method outlined in Equation 17 from Bakk et al. (2014) to manage these 

uncertainties, building on the work of Gong and Samaniego (1981) and refined further by Parke (1986)



Different approaches to compute SEs: standard estimation 

• Under nonnormality, using robust standard errors is critical to avoid biased inference.

• Two-step corrected SEs account for measurement-model uncertainty but assume:

• Correct model specification

• Multivariate normality

• To address this limitation, Yuan & Chan (2002) proposed a robust version of the two-step SE 

correction (See Equations (4a) and (4b) in their paper)

• Implementation available via sam() function in lavaan (v0.6-20+)

• Our study compares both versions (standard vs. robust) under:

• Normal and nonnormal data

• Within the LSAM estimation framework



Bootstrapping for Robust SEs in SEM

• Bootstrapping in SEM:

• Widely used to obtain robust SEs without relying on distributional assumptions

• Effective in small samples

• Key Findings from Research:

• Larger SEs under skewed data: Boomsma (1986) showed bootstrap SEs > ML SEs with skewed data

• Improved accuracy in SEM: Bollen & Stine (1990) demonstrated bootstrap SEs for direct/indirect effects.

• Consistency in nonnormal data: Nevitt & Hancock (2001) found bootstrapping effective with n ≥ 200 for bias 

reduction.

• SE Consistency with Misspecification: Yuan & Hayashi (2006) observed bootstrap SEs remained consistent 

under model misspecifications, unlike analytic SEs.



Nonparametric vs. Parametric Bootstrapping in SE Estimation

• Nonparametric Bootstrapping:

• Widely Used: Popular for its flexibility, avoiding strict distributional assumptions.

• Works well with small samples, directly resampling from observed data

• Parametric Bootstrapping:

• Assumes a Specific Distribution: Useful when there is a reasonable assumption about data 
distribution

• Reduced Variability: By relying on a specified distribution, it may lead to more accurate SE 
estimates

• Advantages in Small Samples: Offers reliable inferences when limited data may not 
represent the full sampling distribution (Hestenberg, 2015)



Aim and Design of the Current Study

• This study aims to assess the performance of both analytic and resampling-based SEs 

derived in LSAM approaches, including two-step, as well as nonparametric and parametric 

bootstrapping.

• To evaluate SE estimation under varying conditions, two simulation studies were 

conducted, differing primarily in the models employed.

• A few characteristics were common to both studies:

• Estimation Methods:

• LSAM (Two-step, Robust two-step, nonparametric, and parametric bootstrapping)

• Joint ML SEM (standard and robust)   

• Sample Sizes: 50, 100, 200, 500, 1000

• The outcome measure of interest (SE)



Aim and Design of the Current Study

• Design and Conditions:

• Estimation Methods:

• LSAM (Two-step, Robust two-step, nonparametric, and parametric 

bootstrapping)

• Joint ML SEM (standard and robust)   

• Sample Sizes: 50, 100, 200, 500, 1000

• Model Specification: Correctly specified and misspecified model

• Distributions: Normal and nonnormal



• In Study 1, the misspecification 

condition was introduced by omitting 

two residual covariances between the 

second and third indicators within each 

latent variable from the analysis 

model, which were specified as 0.40 in 

the population model.

• Nonnormal latent scores with skewness 

of −2 and excess kurtosis of 8

Study 1

Figure 1
The model and unstandardized population values used in the simulations for Study 1. Residual covariances 
(dashed double-headed arrows) are included in the population model but omitted in the analysis model under 

the misspecified condition. For scaling purposes, the first factor loading of each latent variable is fixed to 1 
(denoted by 1* in the figure).



• Study 2 introduced misspecification in the structural 

part by removing the path from f1 to f2.

• Study 2 extended nonnormality to include 

exogenous variables, disturbances, and residuals.

– Exogenous vars: skew = −2, kurtosis = 8

– Nonnormal disturbances (ζ1 and ζ2) were generated 

using centered exponential distributions, with rate 1 

and variances set to 0.91 and 0.71, respectively.

– Residuals were generated using centered exponential 

distributions, with λ as the specified rate parameter

Study 2

Figure 2
The model and unstandardized population values used in the simulations for Study 2. For 
scaling purposes, the first factor loading of each latent variable is fixed to 1 (denoted by 

1* in the figure).



• Empirical SEs were calculated as the standard deviation of point estimates across 

replications: 

– 10,000 replications were used for non-resampling methods (e.g., standard and two-step 

approaches), 

– 1,000 for resampling-based methods (i.e., nonparametric and parametric bootstrap)

• Model-based SEs were obtained by:

– averaging the SE estimates provided by each method across these replications

• SE Bias: the ratio of the model-based SE to the empirical SE for each method

– Ratio = 1: Unbiased SE estimate.

– Ratio > 1: Indicates SE overestimation

– Ratio < 1: Indicates underestimation

Bias Assessment



Study 1 Results (LSAM methods)

SAM Two-step yielded accurate 

SEs under normal conditions, but 

showed increasing 

underestimation under 

nonnormality, especially in 

misspecified models.

SAM Robust improved 

performance under 

nonnormal/correct conditions as 

sample size grew, but still 

underestimated SEs when the 

model was misspecified. Figure 3. Bias in SEs across various sample sizes and SE methods under different conditions in Study 1.



SAM Nonparametric performed 

consistently well under 

nonnormality, even at small 

sample sizes, though it slightly 

overestimated under normality.

SAM Parametric was accurate 

under normality but showed 

notable SE underestimation under 

nonnormal/misspecified

conditions.

Study 1 Results (LSAM methods)

Figure 3. Bias in SEs across various sample sizes and SE methods under different conditions in Study 1.



Study 1 Results (SEM methods)

SEM Standard consistently 

underestimated SEs, especially 

under nonnormal/misspecified

conditions.

SEM Robust initially 

overestimated in small normal 

samples but became more 

accurate with larger N. Under 

nonnormality, SEM Robust 

outperformed SEM Standard in 

producing more reliable SEs.



Study 2 Results For Correct Model with Nonnormal Data (LSAM methods)

SAM Nonparametric delivered near-unbiased SEs across all regression coefficients

SAM Two-step & SAM Parametric showed slightly more variability, depending on parameter and 

sample size

SAM Robust showed the greatest variability, especially at small sample sizes



Study 2 Results For Correct Model with Nonnormal Data (SEM methods)

Under nonnormal data, SEM 

Robust outperformed SEM 

Standard, which showed more 

variability, particularly for f1 ∼X 

and f2 ∼Y in small samples.



Study 2 Results For Misspecified Models

Under normally distributed data:

LSAM Methods

For f1∼X and f2∼Y:

All LSAM methods yielded SE bias values close to 1

For paths involving Z:

SAM Nonparametric provided the most accurate SEs across sample sizes

Other LSAM methods showed underestimation, with bias = 0.81–0.91 (≈19%–9% bias)

SEM Methods

SEM Standard had higher bias, especially for Z∼ f1 in small samples

SEM Robust outperformed SEM Standard across all paths and sample sizes



Study 2 Results For Misspecified Model with Nonnormal Data (LSAM 
methods)

For paths involving Z:

SAM Nonparametric again performed best

Other LSAM methods underestimated SEs, bias ranged from 0.81 to 0.91



Study 2 Results For Misspecified Model with Nonnormal Data (SEM methods)

SEM Standard showed the largest 

biases in small samples e.g., 25% 

and 31% overestimation for f1∼X 

and f1∼Y at N = 50

SEM Robust improved upon SEM 

Standard but still showed ~10% 

underestimation at small N. Bias 

values improved with increasing 

sample size



• First study to evaluate SE estimation within LSAM using:

• Two-step, Robust Two-step, Nonparametric, and Parametric Bootstrap

• Study 1: Simple SEM with measurement misspecification and nonnormal latent scores

• Study 2: Complex SEM with structural misspecification and three layers of nonnormality

Discussion



• SAM Nonparametric: Most robust and accurate, especially under nonnormality and 

misspecification

• SAM Parametric: Best under normality, even with misspecification

• SAM Two-step: Accurate in normal/correct; more bias in nonnormal/small-N cases

• SAM Robust: Improvement over Two-step in nonnormal/large-N scenarios

• SEM Standard: Prone to bias, particularly under nonnormality

• SEM Robust: More stable but not bias-free in small samples

• Our results align with prior bootstrap literature in SEM (Bollen & Stine; Nevitt & Hancock)

• First study to apply parametric bootstrap in SEM → promising but computationally 

intensive

Discussion



• The findings are specific to the conditions manipulated in our simulations. 

• Study 1 examined a simple two-factor SEM, while Study 2 extended the model by 

incorporating observed exogenous and endogenous variables, expanding the scope to 

include more latent variables or exploring complex models, such as latent growth models, 

could improve the generalizability of these findings and provide greater support to applied 

researchers. 

• Regarding two-step SE estimation in LSAM, the current approach relies on returning to the 

global model to compute the joint information matrix, which is somewhat incompatible 

with local SAM. Future research should focus on developing a method that eliminates the 

need to switch back to a global perspective.

Discussion: Limitations & Future Work
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