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ORDINAL MMG-SEM

A bit simpler...
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The problem

Dealing with real data...
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Real life
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Real life
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Real life

* Inreal life, the items are (always) ordinal.
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Real life

* Inreal life, the items are (always) ordinal.

 |gnoring ordinality can cause bias!
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Psychological Methods © 2012 American Psychulosicd Association
2012, Vol. 17, No. 3, 354373 1082-989X/12/512.00  DOL: 10.1037/0029315

When Can Categorical Variables Be Treated as Continuous? A Comparison
of Robust Continuous and Categorical SEM Estimation Methods Under
Suboptimal Conditions

Mijke Rhemtulla Patricia E. Brosseau-Liard and Victoria Savalei
University of Kansas University of British Columbia

A simulation study compared the performance of robust normal theory maximum likelihood (ML) and
robust categorical least squares (cat-LS) methodology for estimating confirmatory factor analysis models
with ordinal variables. Data were generated from 2 models with 2-7 categories, 4 sample sizes, 2 latent
distributions, and 5 patterns of category thresholds. Results revealed that factor loadings and robust
standard errors were generally most accurately estimated using cat-LS, especially with fewer than 5
categories; however, factor correlations and model fit were assessed equally well with ML. Cat-LS was
found to be more sensitive to sample size and to violations of the assumption of normality of the
underlying continuous variables. Normal theory ML was found to be more sensitive to asymmetric
category thresholds and was especially biased when estimating large factor loadings. Accordingly, we
recommend cat-LS for data sets containing variables with fewer than 5 categories and ML when there are
5 or more categories, sample size is small, and category thresholds are approximately symmetric. With
67 categories, results were similar across methods for many conditions; in these cases, either method
is acceptable.

Kevwords: categorical indicators, confirmatory factor analysis, maximum likelihood, categorical least-
squares, robust statistics

Supplemental materials: http://dx.doi.org/10.1037/a0029315 supp
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Thresholds!
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How do we compute thresholds?
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How do we compute thresholds?

» The thresholds represent the proportion of people in each category.
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How do we compute thresholds?

» The thresholds represent the proportion of people in each category.

« They are z-scores (we work with standardized latent scales).
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Now, in MM G-SEM?

Challenges
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Ordinal estimation
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Ordinal estimation

« MMG-SEM also uses Maximum Likelihood for the clustering!

7/20/2025

21




Ordinal estimation

« MMG-SEM also uses Maximum Likelihood for the clustering!

« Multigroup Categorical Confirmatory Factor Analysis (MG-CCFA).
* Instead of MG-CFA.
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Ordinal estimation

« MMG-SEM also uses Maximum Likelihood for the clustering!

« Multigroup Categorical Confirmatory Factor Analysis (MG-CCFA).
* Instead of MG-CFA.

« Least Squares (LS) estimation.

* |nstead of ML.
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Ordinal estimation

* How can we use LS (for MG-CCFA) and ML (for the clustering)?
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The perks of stepwise estimation
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The perks of stepwise estimation

VA1

V2

V3

TI\

V5

V6

V7

V8

V9

A e s a1

7/20/2025

F1

F2

F3

Fa

V10

V11

V12

Measurement model

WNIS-9NIN TVYNIQHO

24




The perks of stepwise estimation

Structural model
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The perks of stepwise estimation

Structural model

ML estimation here!
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Does this actually
matter?

Some expectations and results
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When Can Categorical Variables Be Treated as Continuous? A Comparison
of Robust Continuous and Categorical SEM Estimation Methods Under
Suboptimal Conditions

Mijke Rhemtulla Patricia E. Brosseau-Liard and Victoria Savalei
University of Kansas University of British Columbia

A simulation study compared the performance of robust normal theory maximum likelihood (ML) and
robust categorical least squares (cat-LS) methodology for estimating confirmatory factor analysis models
with ordinal variables. Data were generated from 2 models with 2-7 categories, 4 sample sizes, 2 latent
distributions, and 5 patterns of category thresholds. Results revealed that factor loadings and robust
standard errors were generally most accurately estimated using cat-LS, especially with fewer than 5
categories; however, factor correlations and model fit were assessed equally well with ML. Cat-LS was
found to be more sensitive to sample size and to violations of the assumption of normality of the
underlying continuous variables. Normal theory ML was found to be more sensitive to asymmetric
category thresholds and was especially biased when estimating large factor loadings. Accordingly, we
recommend cat-LS for data sets containing variables with fewer than 5 categories and ML when there are
5 or more categories, sample size is small, and category thresholds are approximately symmetric. With
67 categories, results were similar across methods for many conditions; in these cases, either method
is acceptable.

Kevwords: categorical indicators, confirmatory factor analysis, maximum likelihood, categorical least-
squares, robust statistics

Supplemental materials: http://dx.doi.org/10.1037/a0029315 supp
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2-4 categories

coverage for factor loadings. Consistent with previous studies,
however, ML produced unbiased estimates of the factor correla-
tion. These results suggest that it is the measurement model pa-
rameters that are most affected by wrongly assuming that a linear
model describes the relations between categorical variables and
latent factors. The structural model parameters (in this case, factor
correlations) are not affected, and if the structural parameters are
of greatest interest, robust ML can be an acceptable choice even
with two- to four-category data and is in fact preferred when the
sample size is small. While cat-LS was largely superior to ML with
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2-4 categories

coverage for factor loadings. Consistent with previous studies,
however, ML produced unbiased estimates of the factor correla-
tion. These results suggest that it is the measurement model pa-
rameters that are most affected by wrongly assuming that a linear
model describes the relations between categorical variables and
latent factors. The structural model parameters (in this case, factor
correlations) are not affected, and if the structural parameters are
of greatest interest, robust ML can be an acceptable choice even
with two- to four-category data and is in fact preferred when the
sample size is small. While cat-LS was largely superior to ML with

5-7 categories

the greater the bias in ML estimates. As with two to four catego-
ries, ML estimates of the structural model parameters (in this case,
the correlation between two factors) were extremely accurate,
producing marginally better estimates than cat-LS.
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The perks of stepwise estimation

Often okay
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Simulation?
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Simulation?

» We basically found the same ©
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The perks of stepwise estimation

Often okay
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Why do it?

» More than bias, we also care about validity.
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Why do it?

» More than bias, we also care about validity.

 If the measurement model is biased, measurement invariance (MI) is difficult to test.
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Why do it?

» More than bias, we also care about validity.
 If the measurement model is biased, measurement invariance (MI) is difficult to test.

» Mlis necessary for valid comparisons of the regressions!
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