EAM2025 XI Conference

23RD - 25TH

Spain Tenerife **Canary Islands**

European Association of Methodology

Relationship between repeated measures in clinical psychology studies: an empirical evaluation

José A López-López, Manuel J Albaladejo-Sánchez, Julio Sánchez-Meca, Fulgencio Marín-Martínez, María Rubio-Aparicio, and Juan J López-García University of Murcia, Spain

Funding

MICIU/AEI /10.13039/501100011033 / and FEDER funds, European Union, grant no. PID2022-137328NB-I00

Universidad de La Laguna

Gobierno de Canarias

Consejería de Universidades, Ciencia e Innovación y Cultura

Agencia Canaria de Investigación, Innovación y Sociedad de la Información

An initial example: weight before and after an intervention

Subjects	Pretest	Postest	D
1	80	78	-2
2	90	82	-8
3	72	73	+1
4	92	80	-12
•••	•••	•••	•••

$ar{ar{Y}_{pre}}$	\bar{Y}_{post}	$\overline{\overline{D}}$
S_{pre}	S_{post}	S_D

$$\overline{D} = \overline{Y}_{post} - \overline{Y}_{pre} = -9 \ kg$$

Another example: anxiety symptoms before and after an intervention

Subjects	Pretest	Postest	D
1	8	3	- 5
2	12	6	-6
3	9	6	- 3
4	10	12	+2
•••	•••	•••	•••

$ar{ar{Y}_{pre}}$	\bar{Y}_{post}	$\overline{\overline{D}}$
S_{pre}	S_{post}	S_D

$$\bar{D} = \bar{Y}_{post} - \bar{Y}_{pre} = -4 \text{ units}$$

Estimators of the standardized mean change

$$d_1 = J_1 \frac{\overline{Y}_{post} - \overline{Y}_{pre}}{S_{pre}}$$
Becker

$$J_1 = J_{21} = J_4 = 1 - \frac{3}{4 \cdot df - 1}$$

$$df = n - 1$$

Estimators of the standardized mean change

$$d_1 = J_1 \frac{\overline{Y}_{post} - \overline{Y}_{pre}}{S_{pre}}$$

Becker

$$d_{21} = J_{21} \frac{\overline{Y}_{post} - \overline{Y}_{pre}}{\sqrt{S_D^2/2(1-r)}}$$
Borenstein (1)

$$J_1 = J_{21} = J_4 = 1 - \frac{3}{4 \cdot df - 1}$$
$$df = n - 1$$

Estimators of the standardized mean change

$$d_1 = J_1 \frac{\overline{Y}_{post} - \overline{Y}_{pre}}{S_{pre}}$$

$$d_{21} = J_{21} \frac{\bar{Y}_{post} - \bar{Y}_{pre}}{\sqrt{S_D^2/2(1-r)}}$$
Borenstein (1)

$$d_{22} = J_{22} \frac{\bar{Y}_{post} - \bar{Y}_{pre}}{\sqrt{S_D^2/2(1-r)}}$$
Borenstein (2)

$$J_1 = J_{21} = J_4 = 1 - \frac{3}{4 \cdot df - 1}$$
$$df = n - 1$$

$$J_{22} = J_{32} = 1 - \frac{3}{4 \cdot df_2 - 1}$$

$$df_2 = \frac{2(n-1)}{1+r^2}$$

Estimators of the standardized mean change

$$d_1 = J_1 \frac{\overline{Y}_{post} - \overline{Y}_{pre}}{S_{pre}}$$
Becker

$$d_{21} = J_{21} \frac{\bar{Y}_{post} - \bar{Y}_{pre}}{\sqrt{S_D^2/2(1-r)}}$$
Borenstein (1)

$$d_{22} = J_{22} \frac{\bar{Y}_{post} - \bar{Y}_{pre}}{\sqrt{S_D^2/2(1-r)}}$$
Borenstein (2)

$$d_{31} = J_{31} \frac{\bar{Y}_{post} - \bar{Y}_{pre}}{\sqrt{(S_{pre}^2 + S_{post}^2)/2}}$$

Bonett (1)

$$d_{32} = J_{32} \frac{\bar{Y}_{post} - \bar{Y}_{pre}}{\sqrt{(S_{pre}^2 + S_{post}^2)/2}}$$
Bonett (2)

$$J_1 = J_{21} = J_4 = 1 - \frac{3}{4 \cdot df - 1}$$

 $df = n - 1$

$$J_{22} = J_{32} = 1 - \frac{3}{4 \cdot df_2 - 1}$$

$$df_2 = \frac{2(n-1)}{1+r^2}$$

Estimators of the standardized mean change

$$d_1 = J_1 \frac{\overline{Y}_{post} - \overline{Y}_{pre}}{S_{pre}}$$
Becker

$$d_{21} = J_{21} \frac{\overline{Y}_{post} - \overline{Y}_{pre}}{\sqrt{S_D^2/2(1-r)}}$$
Borenstein (1)

$$d_{22} = J_{22} \frac{\bar{Y}_{post} - \bar{Y}_{pre}}{\sqrt{S_D^2/2(1-r)}}$$
Borenstein (2)

$$d_{31} = J_{31} \frac{\bar{Y}_{post} - \bar{Y}_{pre}}{\sqrt{(S_{pre}^2 + S_{post}^2)/2}}$$

Bonett (1)

$$d_{32} = J_{32} \frac{\overline{Y}_{post} - \overline{Y}_{pre}}{\sqrt{(S_{pre}^2 + S_{post}^2)/2}}$$
Bonett (2)

$$d_4 = J_4 \frac{\overline{Y}_{post} - \overline{Y}_{pre}}{S_D}$$
Gibbons

$$J_1 = J_{21} = J_4 = 1 - \frac{3}{4 \cdot df - 1}$$

 $df = n - 1$

$$J_{22} = J_{32} = 1 - \frac{3}{4 \cdot df_2 - 1}$$

$$df_2 = \frac{2(n-1)}{1+r^2}$$

Simulated example 1

$$N = 1000$$

$$\mu_{pre} = 4$$

$$\mu_{post} = 6$$

$$\Sigma = \frac{1}{0.5} \quad \frac{0.5}{1}$$

INDEX	RESULT
d_1	2.01
d ₂₁	1.99
d ₂₂	1.99
d ₃₁	1.99
d ₃₂	1.99
d_4	2.01

Simulated example 2

$$N = 1000$$

$$\mu_{pre} = 4$$

$$\mu_{post} = 6$$

$$\Sigma = \frac{1}{1.05} \quad \frac{1.05}{2.25}$$

INDEX	RESULT
d_1	2.04
d ₂₁	1.49
d ₂₂	1.49
d ₃₁	1.61
d ₃₂	1.61
d_4	1.89

Simulated example 3

$$N = 10$$

$$\mu_{pre} = 4$$

$$\mu_{post} = 6$$

$$\Sigma = \frac{1}{1.05} \quad \frac{1.05}{2.25}$$

INDEX	RESULT
d_1	1.94
d ₂₁	0.95
d ₂₂	0.97
d ₃₁	1.27
d ₃₂	1.25
d_4	1.41

Conclusion

Different formulas available to estimate the standardized mean change

- Different formulas available to estimate the standardized mean change
- They require different information and make different assumptions

- Different formulas available to estimate the standardized mean change
- They require different information and make different assumptions
- The choice can have a substantial impact on the results

- Different formulas available to estimate the standardized mean change
- They require different information and make different assumptions
- The choice can have a substantial impact on the results
- Also, several formulas have been proposed to calculate the sampling variance of each index

- Different formulas available to estimate the standardized mean change
- They require different information and make different assumptions
- The choice can have a substantial impact on the results
- Also, several formulas have been proposed to calculate the sampling variance of each index
- The performance of each option for the estimator and its sampling variance should be examined taking a more comprehensive approach...

- Different formulas available to estimate the standardized mean change
- They require different information and make different assumptions
- The choice can have a substantial impact on the results
- Also, several formulas have been proposed to calculate the sampling variance of each index
- The performance of each option for the estimator and its sampling variance should be examined taking a more comprehensive approach...
- ... Ideally using Monte Carlo simulation

EAM2025 XI Conference

23RD - 25TH

Spain Tenerife **Canary Islands**

European Association of Methodology

Relationship between repeated measures in clinical psychology studies: an empirical evaluation

José A López-López, Manuel J Albaladejo-Sánchez, Julio Sánchez-Meca, Fulgencio Marín-Martínez, María Rubio-Aparicio, and Juan J López-García University of Murcia, Spain

Funding

MICIU/AEI /10.13039/501100011033 / and FEDER funds, European Union, grant no. PID2022-137328NB-I00

Universidad de La Laguna

Gobierno de Canarias

Consejería de Universidades, Ciencia e Innovación y Cultura

Agencia Canaria de Investigación, Innovación y Sociedad de la Información

