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World has seen the rise of anti-science
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However, majority listens to science

Trust in science seems as a core aspect of supporting science

(Cologna et al., 2025; Mede et al., 2025)



People who trust scientists are more likely...

To protect the climate (coiognaetal, 2025)




People who trust scientists are more likely...

To protect their own (and others’) health (onie etal, 2020)




People who trust scientists are more likely...

To reject problematic conspiracy theories (ronkovic et al., 2021)




People who trust scientists are more likely...

See our work as valuable and support us, for example, with funding (..
Wingen et al., 2020, 2022)




However, past work on trust in science had
two major issues

* Focus on single interesting effects
 E.g. effect of replicability (Wingen et al., 2020)
 Effect of easiness (Scharrer et al., 2016)
e Effect of me-search (Altenmiiller et al. 2021)

* Only very little focus on systematic theory building (e.g., Wintterlin et
al., 2022)

* Focus on WEIRD countries (Cologna et al., 2025)



Building and comparing theories using
oredictive modeling

* Good theories should make strong predictions about unseen data
(Hehman et al. 2024)

* Building predictive models is thus an important way to build and
compare theories

* We here seek to build such a model, contributing to future theory
building in this field

* We use LASSO regression to reach an interpretable model, more
useful for early stages of theory building



High variance High bias Low bias, low vanance
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regularized over-regularized regularized

e Least Absolute Shrinkage Selection Operator (LASSO)
A penalized regression that shrinks small coefficients to zero

Shrinkage controlled by a Tuning parameter A (arbitrary, normally set to 0.5)
* Creates a sparse solution of coefficients (avoids overfitting)
* Higher A = more parsimonious (less variance) but more bias

Useful with high dimensional data and a suspected sparse true model
Caution: Underestimation of coefficients, unstable if collinear

Lasso Regression with Different Lambda Values
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LASSO regression

* Which tuning value we must use?

* Fine-tuning penalty
e Search for optimal values of A via Cross-Validation or other techniques

* Creates repeated random splits of data for training and validation datasets
* Example: Split data into 5 equal parts (folds).
* For eachA:
* Train on 4 folds, validate on the 5th.
* Repeat 5 times, rotating the validation fold.
* Average the validation errors.
e Pick the A with the best average performance.

* Provides more unbiased A values at the cost of computation intensiveness



Overcoming WEIRD focus

* This model shall be a global model:
e Using the same predictors in all countries
* With an equal predictive performance in each country



Dataset

e The TISP Dataset

(https://www.nature.com/articles/s4
1597-024-04100-7.pdf)

e More info:

https://www.nature.com/articles/s41 ' »
562-024-02090-5 “

* Full sample:
* N(individuals) = 69534
* N(countries) = 68

w

Valid sample size

0 2,000 4,000 6,000 8,000

Fie. 1 Valid sample size across countries.

(Cologna et al., 2025; Mede et al., 2025)
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Measures for
demographic model

* Trust in Scientists: average
12 items

* e.g. ,,How honest or
dishonest are most
scientists?“
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Measures for demographic model

* Trust in Scientists: average 12 items
e e.g. ,How honest or dishonest are most scientists?“

* Demographic variables:
 Gender & Age
* Education: did not attend school (1) — higher education (4)
* Incomein USD & log income
 Religiosity: Not religious at all (1) — very strongly religious (5)
* Place of residence: Urban vs. Rural
 Political orientation: strongly liberal (1) — strongly conservative (5)

* Psychological measures:

* We later included various other measures, including how often people come acress
information about science, engage with scientific content, what goals scientists should
prioritize etc.



Method and Performance demographic
model worldwide

* Cross-validation lasso regression with mixture = 0.5 and fine-tuned
penalty (apply on a trainings data set with N = 55655)

Cross-validated

Metric

performance measures
RMSE global 0.650
R? global 0.113

* However, R? largely due to country dummies



Performance: globa
demographic mode

analyses per country

R? of global model per country: M = 0.013, Min = 0, Max = 0.064

Model Performance: Global Model (R?)
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Results from cross-validated [asso regression



Performance: per country analyses
demographic model

* R% separate country-analyses: M = 0.05, Min = 0.009, Max = 0.197
Model Performance: Country-specific Models (R?)
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Fesults from cross-validated lasso regression



Variable plot

ASSO Coefficients - Demographic variables: Country-specific analyses
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Measures for psychological model

* Demographics +
e Social Dominance Orientation

* How often have you come across information about science in the following places?
(newspaper, radio, books...)

 How often engagement with or related to scientific issues: (conversations with
family, chatting in messaging apps, sharing or commenting on social media)?

* What goals should scientists prioritize? & How strongly do you believe that science
aims to tackle these goals? (health, energy problems, poverty, defense)

* Range of climate change related questions (e.g. emotions, satisfaction with
government, support of policies, perception on impact on weather events)

* Trust in scientific method

* In total 73 predictors



Method and Performance psycholoical model
worldwide

* Cross-validation lasso regression with mixture = 0.5 and fine-tuned
penalty (apply on a trainings data set with N = 55655)

Cross-validated

Metric
performance measures

RMSE global 0.484
R? global 0.507




Performance: global analyses per country
Psychological Mode

R? of global model per country: M =0.392, Min = 0.075, Max = 0.641
Model Performance: Global Model (R?)

Psychological model including all variables
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Fesults from cross-validated lasso regression (wekshied-gata)



Performance: per country analyses
Psychological Model
R? of global model per country: M = 0.347, Min = 0.09, Max = 0.641

Model Performance: Country-specific models (R?)
Psychological model including all variables
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Results from cross-validated lasso regression (wethgiteddata)



Variable plot

LASSO Coefficients - Country-specific analyses

Belief in scientific method
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Discussion

* Building a model based on mostly demographics is very difficult
* Bad model fit and huge variation across countries/predictors

* Model fit gets better when including psychological variables but still
huge variation among fit and predictors

|((

* And this ,,psychological“ model is somewhat trivial, for example
including trust in scientific methods (best predictor)

* While interesting that this is difficult, probably difficult to build on



Discussion

* Thus, we interpret that up to date...
* Trust in science is a deeply variable construct across countries
* Each culture and history shows their own behavior

* Possible explanation is that science is also a social construct from the
West

* |tis a global institution right now, but still WEIRD countries are majority

e But cultures may continue to relate to them as an export of the West (e.g.,
African or Asian countries), or as a flagship of a particular moral of their
culture (e.g., non-religious West)



Next steps

e Confirmatory studies to cross-validate the model

* In-depth studies in a single country to test applicability
* Explore how cultures may shape these relations

* Temporal associations are important: Cross-generations
* Test potential impact of political action
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