23RD - 25TH ULY

Spain Tenerife **Canary Islands**

European **Association** of Methodology

Mixture Multigroup SEM: an empirical application revealing cross-national patterns in how human values predict climate policy support

Meijun Yao, Jeroen K. Vermunt, and Kim De Roover

Universidad de La Laguna

Gobierno de Canarias

Ciencia e Innovación y Cultura

Agencia Canaria de Investigación,

Overview

01

What is Mixture Multigroup SEM (MMG-SEM)?

02

How to conduct MMG-SEM with empirical data?

03

Mediation model with MMG-SEM

04

Discussion and conclusions

01

What is Mixture Multigroup SEM (MMG-SEM)

Mixture Multigroup Structural Equation Modeling

Self-Transcendence

Conservation

Climate Policy Support

Self-Enhancement

Mixture Multigroup Equation Modeling

Group differences can also come from the measurement model

Mixture Multigroup Equation Modeling

European Association of Methodology Spain Tenerife **Canary Islands**

¦ Cluster 1

Cluster 2

Efficient comparisons Across many groups

Mixture Multigroup Structural Equation Modeling

Regression coefficients of latent variables

MMG-SEM

02

How to conduct MMG-SEM with empirical data?

Step 0: Data Preparation

- ➤ Data: European Social Survey Round 8 (ESS8) with 23 countries
- Variables:

Survey Items measuring the latent variables of interest

(5 items for self-transcendence values, 6 items for conservation values, 4 items for self-enhancement values, and 3 items for climate policy support)

+

grouping variable (country)

Step 1: Measurement Model with Measurement Invariance Testing

Measurement Block 1

Initial Configural Invariance: χ^2 =20032,931, df=2001, CFI=0.854, RMSEA=0.076

Measurement Block 1

Initial Configural Invariance: χ^2 =20032,931, df=2001, CFI=0.854, RMSEA=0.076

Final Configural Invariance: χ²=11782.775, df=1863, CFI=0.920, RMSEA=0.059

Full Metric Invariance: χ²=14413.249, df=2237, CFI=0.902, RMSEA=0.059

Partial Metric Invariance: χ²=13779.825, df=2215, CFI=0.907, RMSEA=0.058

Measurement Block 2

Initial Configural Invariance: just identified – perfect fit

Full Metric Invariance: χ²=403.688, df=44, CFI=0.949, RMSEA=0.072

Partial Metric Invariance: χ²=170.123, df=22, CFI=0.978, RMSEA=0.066


```
NoOpen.HV.Metric.M2.Marker<-'
SelfTran=~ST4+ST1+ST2+ST3+ST5+SE3+C3+C4
Conser=~C2+C1+C3+C4+C5+C6+SE4
SelfEnhan=~SE2+SE1+SE3+SE4+C1
##Add Error Term Correlation
C5~~C6
NoOpen.HV.Metric.Fit2.Marker<(-cfa)(model = NoOpen.HV.Metric.M2.Marker,
                                   data = ESS8.
                                   group = "country",
                                   estimator="MLR",
                                   missing="FIML",
                                   group.equal="loadings",
                                   group.partial=c("SelfEnhan=~SE3"))
CCPolSupport.PMetric.M1.MarkerSup2<-'
CCPolicySupport=~support2+support1+support3
CCPolSupport.PMetric.Fit1.MarkerSup2<{cfa}(model = CCPolSupport.PMetric.M1.MarkerSup2,
                                           data = ESS8.
                                           group = "country",
                                           estimator="MLR".
                                           missing="FIML",
                                           group.equal="loadings",
                                           group.partial=c("CCPolicySupport=~support3"),
                                           bounds="wide")
```


Step 2: Mixture Clustering on Structural Model

Model Selection - CHull, BIC_G, AIC

nstarts = 50L, #50 random starts

missing="FIML")

CCPolSupport.PMetric.Fit1.MarkerSup2), #the lavaan cfa objects from the measurement model

round(BasicModel.4clus\$posteriors[,1:4],digits = 3) ##check the posterior membership probabilities

BasicModel.4clus\$param\$beta_ks ##Check the cluster-specific regression coefficients


```
|Str_modelk-'
CCPolicySupport~SelfTran+Conser+SelfEnhan
BasicModel.Selection
ModelSelection
(dat=ESS8)
                                    S1 = list(NoOpen.HV.Metric.M2.Marker,
                                              CCPolSupport.PMetric.M1.MarkerSup2), ##objects with lavaan syntax for the measurement model
                                    S2 = Str_model
                                     group = "country",
                                                                                       lavaan objects from measurement model
                                    Clusters=c(1,8) ##run from 1-8 clusters
                                    seed = 100.
                                    s1_fit = list(NoOpen.HV.Metric.Fit2.Marker.
                                                  CCPolSupport.PMetric.Fit1.MarkerSup2), #the lavaan cfa objects from the measurement mode
                                    nstarts = 50L. #50 random starts
                                    missing="FIML")
BasicModel.4clus< (MMGSEM) dat=ESS8.
                         S1 = list(NoOpen.HV.Metric.M2.Marker, CCPolSupport.PMetric.M1.MarkerSup2),
                         S2 = Str_model,
                         group = "country",
                        nclus=4) ##4-cluster solution
                         seed = 100.
                         s1_fit = list(NoOpen.HV.Metric.Fit2.Marker, CCPolSupport.PMetric.Fit1.MarkerSup2),
                         nstarts = 50L.
                         missing="FIML")
```


Cluster 1: Lithuania

Cluster 2: Hungary

Cluster 3:

Austria, Belgium, Switzerland, Czech Republic, Germany, Spain, Finland, France, the UK, Italy, Netherlands, Norway, Portugal, Sweden

Cluster 4: Estonia, Ireland, Israel, Iceland (\hat{z}_{g4} =0.995), Poland, Russia, Slovenia

Cluster 3:

Austria, Belgium, Switzerland, Czech Republic, Germany, Spain, Finland, France, the UK, Italy, Netherlands, Norway, Portugal, Sweden

Cluster 2: Hungary

Cluster 4:

Estonia, Ireland, Israel, Iceland (\hat{z}_{g4} =0.995), Poland, Russia, Slovenia

European Association of Methodology Spain Tenerife Canary Islands

Cluster 3:

Austria, Belgium, Switzerland, Czech Republic, Germany, Spain, Finland, France, the UK, Italy, Netherlands, Norway, Portugal, Sweden

Cluster 2: Hungary

Cluster 4:

Estonia, Ireland, Israel, Iceland (\hat{z}_{g4} =0.995), Poland, Russia, Slovenia

European Association of Methodology Spain Tenerife Canary Islands

Cluster 3:

Austria, Belgium, Switzerland, Czech Republic, Germany, Spain, Finland, France, the UK, Italy, Netherlands, Norway, Portugal, Sweden

Cluster 2: Hungary

Cluster 4:

Estonia, Ireland, Israel, Iceland (\hat{z}_{g4} =0.995), Poland, Russia, Slovenia

Step 3: Validation with SAM via MG-SEM estimation

Step 3: Validation with SAM via MG-SEM estimation

Step 4: Geographical patterns and theoretical implications

03

Mediation Model with MMG-SEM

Cluster 3:

Austria, Belgium, Switzerland, Czech Republic, Germany, Spain, Finland, France, the UK, Italy, Netherlands, Norway, Portugal, Sweden

Cluster 2: Hungary

Cluster 4:

Estonia, Ireland, Israel, Iceland (\hat{z}_{g4} =0.995), Poland, Russia, Slovenia

Cluster 3:

Austria, Belgium, Switzerland, Czech Republic, Germany, Spain, Finland, France, the UK, Italy, Netherlands, Norway, Portugal, Sweden

Cluster 4: Estonia, Ireland, Israel, Iceland (\hat{z}_{g4} =0.995), Poland, Russia, Slovenia

Cluster 3:

Austria, Belgium, Switzerland, Czech Republic, Germany, Spain, Finland, France, the UK, Italy, Netherlands, Norway, Portugal, Sweden

Cluster 4:

Estonia, Ireland, Israel, Iceland (\hat{z}_{g4} =0.995), Poland, Russia, Slovenia

Cluster 3 (moderately strong self-transcendence and conservation effects)

→ 2 sub-clusters

Sub-Cluster 3.1: Austria, Czech Republic, Spain, Italy

Sub-Cluster 3.2:

Belgium, Switzerland, Germany, Finland, France, the UK, Netherlands, Norway, Portugal, Sweden

Cluster 4 (weak self-transcendence and conservation effects)

→ 2 sub-clusters

EAM2025 XI Conference

European Association of Methodology Spain Tenerife Canary Islands

Cluster 3: Austria, Belgium, Switzerland, Czech Republic, Germany, Spain, Finland, France, the UK, Italy, Netherlands, Norway, Portugal, Sweden

Sub-Cluster 3.1: Austria, Czech Republic, Spain, Italy

Sub-Cluster 3.2: Belgium, Switzerland, Germany, Finland, France, the UK, Netherlands, Norway, Portugal, Sweden

Value-driven and belief-amplifying advocates

Cluster 4: Estonia, Ireland, Israel, Iceland (\hat{z}_{g4} =0.995), Poland, Russia, Slovenia

Sub-Cluster 4.1:
Israel, Iceland
Sub-Cluster 4.2:
Israel, Iceland

Paradoxical valuepathway actors Value-detached pragmatists

Value-driven but belief-cautious skeptics

04

Discussion and conclusion

- ➤ Methodological contribution
 - MMG-SEM a new tool for cross-cultural comparative research
 - Flexibility and efficiency in handling both basic model and complex model
- > Theoretical contribution
 - Cross-national patterns
 - Typologies

- ➤ Limitation and next project
 - Neglect the heterogeneity within the countries (e.g., heterogeneity due to different demographic backgrounds and geographical regions)
 - → Project 2: WGMix-SEM (Extension of MMG-SEM)
 - Most survey items are Likert scale
 - → Next presentation by Andres: Extending MMG-SEM to deal with ordinal variables

Thank you!

