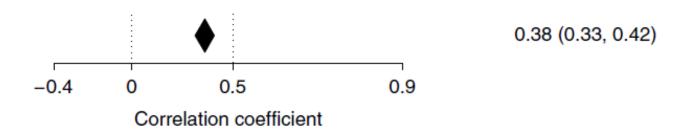
Person- or situation-specific? Factors explaining convergent validity and discrepancy between self-report and digital trace of smartphone use

MUNI FSS Interdisciplinary Research Team on Internet and Society Martin Tancoš, Michał Tkaczyk, David Šmahel, Steriani Elavsky

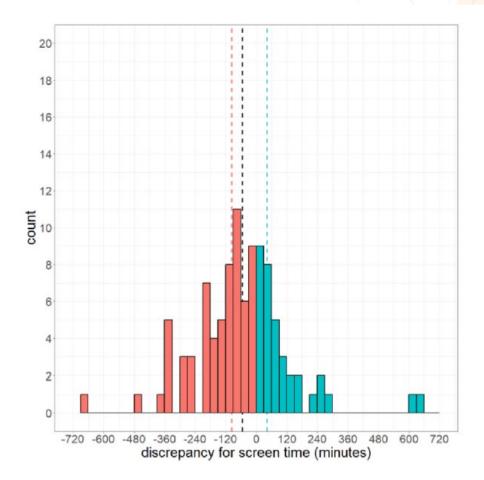
The data described/study is from the project "Research of Excellence on Digital Technologies and Wellbeing CZ.02.01.01/00/22_008/0004583" which is co-financed by the European Union.



Introduction

- Majority of digital media effects research has been based on selfreported estimates (Dienlin & Johannes, 2020)
- Accuracy and validity of self-reported measures of digital media use has been recently questioned (Parry et al., 2021)

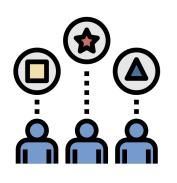
 Innacuracy often related to central variables in question (e.g., media use itself, well-being) (Araujo et al., 2017; Sewall et al., 2020)



DigiWELL Introduction

Tkaczyk et al., 2024

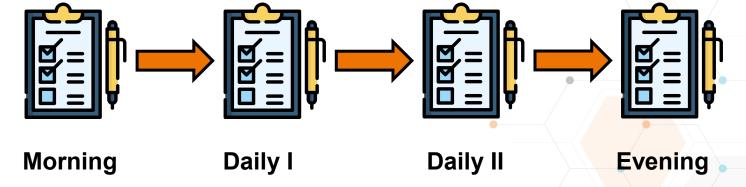
- Our recent study on adolescent sample follows the trend
 - between r = .40
 - within r = .29
 - mean discrepancy = -32 mins
 - discrepancy ICC = .56



DigiWELL Introduction

- To adress the limitations of prior research, we examined potentialy relevant factors that may affect:
 - Convergent validity
 - Discrepancy

Between-person	Within-person
Overall smartphone use	
Mobile control self-efficacy	
Screen time fragmentation	Screen time fragmentation
Overall compliance	Daily compliance
	Weekend vs. weekdays
	Day of study



Methods

Experience sampling method (ESM)

- 14 days 4 surveys per day
 - Semi-random time frames
- Digital trace of smartphone use (every second)
- Custom built smarphone app

Self-reported smartphone use assessed in evening surveys:

"For how long you were using your smartphone (including phone-calls, being-online, playing games, listening to music, etc.) during the day (up to this questionnaire). Enter the hours and minutes (e.g. enter 5.5 hours as 05:30)."

Methods

- Sample N = 132, 58 % boys, 13 to 17 y. o., Czech
 - 812 daily observations
 - overall compliance rate: 72%

- Study part of the larger research project (EXPRO) (Elavsky et al., 2022)
 - four measurement bursts (per 14 days)
 - we used data from the third burst

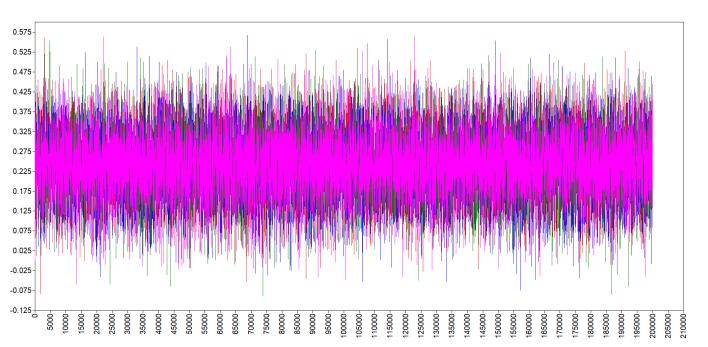
DigiWELL Analysis

Convergent validity model

- Validity: digital trace → self-report
- Within-person level interactions
- Cross-level interactions: predictors → random slope (validity)
- Random intercept and random slope terms (with cov)

Discrepancy model

- Discrepancy = | digital trace self-report |
- Main effects without interactions
- Random intercept and random slope terms (with cov)
- Robustness check using complementary model with log-transformed discrepancy



Analysis

- Bayesian estimation in Mplus
 - MCMC, Gibbs sampling
 - 4 chains, 200k iterations
 - Default priors: β, τ ~ N(0, ∞); ψ ~ IW(0, -3) or IG(-1, 0)

Overall smartphone use

- Positive relationship with discrepancy ($\beta = .25$)
- Heavy smartphone users tend to underestimate their usage more severely than lighter users (Sewall et al., 2020)

Mobile control self-efficacy

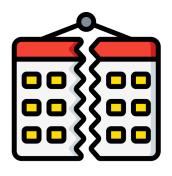
No non-negligible effect

Smartphone use fragmentation

- Measured by time per interaction
 - TPI = screen time / # interactions
- Less within-person fragmentation related to more discrepancy (β = .18)
- Opposite to our hypothesis and prior evidence

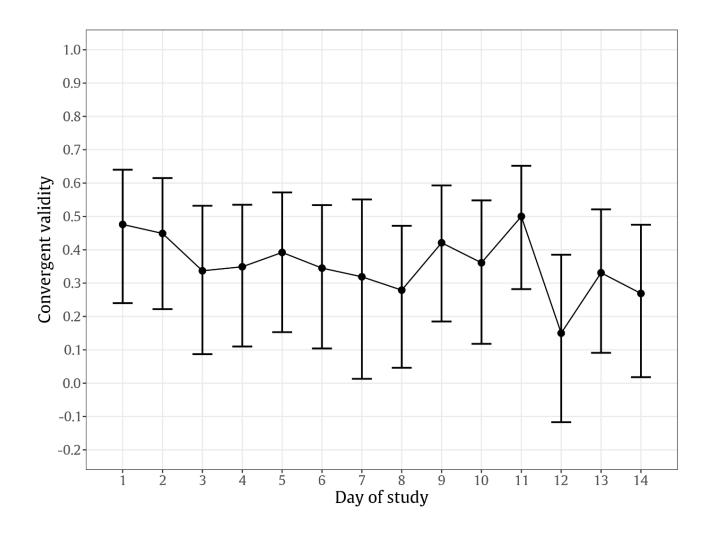
Compliance with the study protocol

- Undirect measure of the motivation to participate
- No non-negligible effects on either between or withinperson level



Weekend vs. weekdays

No non-negligible effects




Day of study

- Two concurrent hypotheses
 - learning effect and fatigue effect (Verbeij et al., 2021)
- Decreasing convergent validity with increasing days ($\beta = -.07$)
 - Suggesting fatigue effect

Conclusions

- The nuanced daily variations underscore the complexity of measuring digital behavior
- highlighting the importance of context in the understanding of self-reported smartphone use
- These findings are particularly relevant for future research designs on the effects of digital media use

Limitations

- Digital trace data are not "objective" or exact measure of smarthphone use behavior – measurement error
- Low power for between-person effects
- Limited generalizability

References

- Araujo, T., Wonneberger, A., Neijens, P., & De Vreese, C. (2017). How Much Time Do You Spend Online? Understanding and Improving the Accuracy of Self-Reported Measures of Internet Use. *Communication Methods and Measures*, 11(3), 173–190. https://doi.org/10.1080/19312458.2017.1317337
- Dienlin, T., & Johannes, N. (2020). The impact of digital technology use on adolescent well-being. *Dialogues in Clinical Neuroscience*, 22(2), 135–142. https://doi.org/10.31887/DCNS.2020.22.2/tdienlin
- Elavsky, S., Blahošová, J., Lebedíková, M., Tkaczyk, M., Tancoš, M., Plhák, J., Sotolář, O., & Šmahel, D. (2022). Researching the Links Between Smartphone Behavior and Adolescent Well-being With the FUTURE-WP4 (Modeling the Future: Understanding the Impact of Technology on Adolescent's Well-being Work Package 4) Project: Protocol for an Ecological Momentary Assessment Study. *JMIR Research Protocols*, 11 (3), Article e35984. https://doi.org/10.2196/35984
- Parry, D. A., Davidson, B. I., Sewall, C. J. R., Fisher, J. T., Mieczkowski, H., & Quintana, D. S. (2021). A systematic review and meta-analysis of discrepancies between logged and self-reported digital media use. *Nature Human Behaviour, 5*(11), 1535–1547. https://doi.org/10.1038/s41562-021-01117-5
- Sewall, C. J. R., Bear, T. M., Merranko, J., & Rosen, D. (2020). How psychosocial well-being and usage amount predict inaccuracies in retrospective estimates of digital technology use. *Mobile Media & Communication*, 8(3), 379–399. https://doi.org/10.1177/2050157920902830
- Tkaczyk, M., Tancoš, M., Smahel, D., Elavsky, S., & Plhák, J. (2024). (In)accuracy and convergent validity of daily end-of-day and single-time self-reported estimations of smartphone use among adolescents. *Computers in Human Behavior*, *158*, 108281. https://doi.org/10.1016/j.chb.2024.108281
- Verbeij, T., Pouwels, J. L., Beyens, I., & Valkenburg, P. M. (2021). The accuracy and validity of self-reported social media use measures among adolescents.

 *Computers in Human Behavior Reports, 3, 100090. https://doi.org/10.1016/j.chbr.2021.100090

The data described/study is from the project "Research of Excellence on Digital Technologies and Wellbeing CZ.02.01.01/00/22_008/0004583" which is co-financed by the European Union.

